954 research outputs found

    Security of Quantum Key Distribution with Coherent States and Homodyne Detection

    Full text link
    We assess the security of a quantum key distribution protocol relying on the transmission of Gaussian-modulated coherent states and homodyne detection. This protocol is shown to be equivalent to a squeezed state protocol based on a CSS code construction, and is thus provably secure against any eavesdropping strategy. We also briefly show how this protocol can be generalized in order to improve the net key rate.Comment: 7 page

    Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients

    Get PDF
    This is the author accepted manuscript. The final version is available from Portland Press via the DOI in this recordFully sedated patients, being treated in the intensive care unit (ICU), experience substantial skeletal muscle loss. Consequently, survival rate is reduced and full recovery after awakening is compromised. Neuromuscular electrical stimulation (NMES) represents an effective method to stimulate muscle protein synthesis and alleviate muscle disuse atrophy in healthy subjects. We investigated the efficacy of twice-daily NMES to alleviate muscle loss in six fully sedated ICU patients admitted for acute critical illness [n=3 males, n=3 females; age 63 ± 6 y; APACHE II (Acute Physiology and Chronic Health Evaluation II) disease-severity-score: 29 ± 2]. One leg was subjected to twice-daily NMES of the quadriceps muscle for a period of 7 ± 1 day whereas the other leg acted as a non-stimulated control (CON). Directly before the first and on the morning after the final NMES session, quadriceps muscle biopsies were collected from both legs to assess muscle fibre-type-specific cross-sectional area (CSA). Furthermore, phosphorylation status of the key proteins involved in the regulation of muscle protein synthesis was assessed and mRNA expression of selected genes was measured. In the CON leg, type 1 and type 2 muscle-fibre-CSA decreased by 16 ± 9% and 24 ± 7% respectively (P<0.05). No muscle atrophy was observed in the stimulated leg. NMES increased mammalian target of rapamycin (mTOR) phosphorylation by 19 ± 5% when compared with baseline (P<0.05), with no changes in the CON leg. Furthermore, mRNA expression of key genes involved in muscle protein breakdown either declined [forkhead box protein O1 (FOXO1); P<0.05] or remained unchanged [muscle atrophy F-box (MAFBx) and muscle RING-finger protein-1 (MuRF1)], with no differences between the legs. In conclusion, NMES represents an effective and feasible interventional strategy to prevent skeletal muscle atrophy in critically ill comatose patients

    Can education change the world? Education amplifies differences in liberalization values and innovation between developed and developing countries

    Get PDF
    The present study investigated the relationship between level of education and liberalization values in large, representative samples administered in 96 countries around the world (total N = 139,991). These countries show meaningful variation in terms of the Human Development Index (HDI), ranging from very poor, developing countries to prosperous, developed countries. We found evidence of cross-level interactions, consistently showing that individuals' level of education was associated with an increase in their liberalization values in higher HDI societies, whereas this relationship was curbed in lower HDI countries. This enhanced liberalization mindset of individuals in high HDI countries, in turn, was related to better scores on national indices of innovation. We conclude that this 'education amplification effect' widens the gap between lower and higher HDI countries in terms of liberalized mentality and economic growth potential. Policy implications for how low HDI countries can counter this gap are discussed

    QKD in Standard Optical Telecommunications Networks

    Get PDF
    To perform Quantum Key Distribution, the mastering of the extremely weak signals carried by the quantum channel is required. Transporting these signals without disturbance is customarily done by isolating the quantum channel from any noise sources using a dedicated physical channel. However, to really profit from this technology, a full integration with conventional network technologies would be highly desirable. Trying to use single photon signals with others that carry an average power many orders of magnitude bigger while sharing as much infrastructure with a conventional network as possible brings obvious problems. The purpose of the present paper is to report our efforts in researching the limits of the integration of QKD in modern optical networks scenarios. We have built a full metropolitan area network testbed comprising a backbone and an access network. The emphasis is put in using as much as possible the same industrial grade technology that is actually used in already installed networks, in order to understand the throughput, limits and cost of deploying QKD in a real network

    Matrix interpretation of multiple orthogonality

    Get PDF
    In this work we give an interpretation of a (s(d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials.We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions.We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite- Padé approximation in matrix form is given
    • …
    corecore